Contents
  1. 1. 自函子
  2. 2. Hask范畴
  3. 3. 分形
  4. 4. 特别说明

自函子

自函子(Endofunctor)是一个将范畴映射到自身的函子(A functor that maps a category to itself)。函子是将一个范畴转换到另一个范畴,所以自函子是一种特殊的函子。
由三部分组成:

  1. 一组元素对象
  2. 一组态射
  3. 态射组合(二元运算)

如果这个范畴满足结合律,那么它是一个半群;如果半群满足幺元(单位元,identity),那么它是幺半群(Monoid)。
因此,函子是将一个Monoid中的元素对象映射到另外一个Monoid的元素对象,态射也是这么映射的。而自函子映射的这两个Monoid是同一个。
假设这个自函子为F,则对于F[Int]作用的结果仍是Int,对于函数f: Int=>String映射的结果F[f]也仍是函数f,所以自函子对范畴中的元素和关系不做任何改变。

Hask范畴

Haskell里的所有类型和函数都放到一个范畴里,取名为Hask。

解释上图,A,B代表普通类型如String,Int,Boolean等,这些(有限的)普通类型是一组类型集合,还有一组类型集合是衍生类型(即由类型构造器与类型参数组成的),这是一个无限集合(可以无限衍生下去)。这样范畴Hask就涵盖了haskell中所有的类型。

对于范畴Hask来说,如果有一个函子F,对里面的元素映射后,其结果仍属于Hask,比如我们用List这个函子:

List[A], List[List[A]], List[List[List[A]]]…

发现这些映射的结果也是属于Hask范畴(子集),所以这是一个自函子,实际上在Hask范畴上的所有函子都是自函子。

分形

Hask范畴结构是一个分形(fractal)结构。

如上面的这片叶子,它的每一簇分支,形状上与整体的形状是完全一样的,即局部与整体是一致的结构,并且局部可以再分解下去。

这种结构在函数式语言里也是很常用的,最典型的如List结构,由head和tail两部分组合而成,而每个tail也是一个List结构,可以递归的分解下去。

特别说明

由于关于自函子的中文介绍比较少,所以这篇文章我基本都是引用hongjiang的自函子(Endofunctor)是什么
希望加深理解之后,再填充更多原创内容。

转载请注明作者Jason Ding及其出处
jasonding.top
Github博客主页(http://blog.jasonding.top/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页

Contents
  1. 1. 自函子
  2. 2. Hask范畴
  3. 3. 分形
  4. 4. 特别说明